首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   5篇
化学   152篇
晶体学   4篇
力学   18篇
数学   35篇
物理学   42篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   17篇
  2020年   11篇
  2019年   5篇
  2018年   4篇
  2017年   3篇
  2016年   22篇
  2015年   6篇
  2014年   8篇
  2013年   30篇
  2012年   18篇
  2011年   22篇
  2010年   18篇
  2009年   11篇
  2008年   10篇
  2007年   13篇
  2006年   6篇
  2005年   7篇
  2004年   5篇
  2003年   10篇
  2002年   6篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
11.
Annals of Operations Research - In this paper, we examine the use of conditional expectation, either to reduce the dimensionality of large-scale portfolio problems or to propose alternative...  相似文献   
12.
13.
The condensation of N1-benzimidazolyl amidines 1 with tris(dimethy- lamino)phosphine leads to the corresponding [1,2a]Benzimidazolo-1,3,5,2-triazaphosphorines 3 . The N2-phosphoroamidine intermediates 2′ are isolated and yielded the corresponding cyclic compounds 4 upon heating. The oxidation by sulfur of the compounds 3 gives the thiooxide derivatives 4 .

The structure of these compounds is unambiguously confirmed by IR, 1H, 31P, and 13C NMR spectroscopy and by MS for some products.  相似文献   
14.
New metal complexes of (Zn(II), Co(II), Ni(II) and Cu(II)) based on the ligand 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzo[d]imidazole] were synthesized, whose structures were determined with the different spectroscopic techniques 1H NMR,13C NMR, FT-IR, UV–Visible and by mass spectrometry. The thermal analysis was performed by TG-DTA. The antioxidant activity of the ligand and its complexes was evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) method, in comparison with the synthetic antioxidant, ascorbic acid. The results obtained showed that the antioxidant activity of the ligand and its complexes is moderate and that the copper complex has a high activity that exceeds that of ascorbic acid. Antimicrobial activity of the ligand and its metal complexes was studied against two Gram-positive bacteria: Bacillus subtilis ILP1428B, Staphylococcus aureus CIP543154 and two Gram-negative bacteria: Pseudomonas aeruginosa ATCC27653, Escherichia coli CIP5412 (American Type Culture Collection)the activity data show that the metal complexes are more potent than the free ligand.  相似文献   
15.
In this work, magnesium ferrites nanoparticles (MgFe2O4 NPs) were successfully fabricated by sol-gel auto-combustion (SGAC) method and were used in heterogeneous Fenton-like degradation of tartrazine. The obtained products were characterized using XRD, FTIR, SEM and EDX. XRD studies confirmed that the synthesized MgFe2O4 NPs had a cubic spinel structure. The average crystallite size was evaluated using the Debyee Scherrer formula and found to be in the range 16.18–28.55 nm. In FTIR spectra, two primary absorption bands at 571 cm?1 and 415 cm?1 were observed. The spinel ferrites are characterized by these bands and the EDX confirms the presence of the desired elements Mg, Fe, and O. The influences of operating parameters were examined using the Box Behnken statistical design (BD), including magnesium ferrite dosage (0.04–0.12 g/L), tartrazine concentration (30–50 mg/L) and H2O2 concentration (3.53–7.06 mM). Using analysis of variance, a significant quadratic model was created. Optimum conditions were magnesium ferrite dosage of 0.092 g/L, tartrazine concentration of 30.21 mg/L and H2O2 concentration of 6.66 mM, respectively. The predicted degradation efficiency within the optimum conditions as established by the suggested model was 98.4%. Confirmatory tests were carried out and the degradation efficiency of 98.9% was observed, which was in good agreement with the model's prediction. After five recuperation and reapplications, the catalyst's degradation efficiency remains stable. These findings indicate that a heterogeneous Fenton-like process utilizing MgFe2O4 is effective in advanced wastewater treatment.  相似文献   
16.
17.
Precipitation or coprecipitation of polyelectrolytes has been largely investigated. However, the precipitation of polyelectrolytes via addition of charged and non‐charged surfactants has not been systematically studied and reported. Consequently, the aim of this work is to investigate the effect of different surfactants (anionic, cationic, non‐charged and zwitterionic) on the precipitation of cationic and anionic polymethylmethacrylate polymers (Eudragit). The surfactants effect has been investigated as a function of their concentration. Special attention has been dedicated to the CMC range and to the colloidal characterization of the formed dispersions. Moreover, the effect of salt (NaCl) and pH was also addressed. It is pointed out that non‐ionic and zwitterionic surfactants do not interact with charged Eudragit E100 and L100. For oppositely charged Eudragit E100/SDS and Eudragit L100/CTAB, precipitation occurs, and the obtained dispersions have been characterized in terms of particle size distribution and zeta potential. It was established that the binding of SDS molecules to Eudragit E100 polymer chains is made through the negative charges of the surfactant heads under the CMC value whereas binding of CTAB to Eudragit L100 chains is made at a CTAB concentration 5 times above its CMC. For Eudragit E100/SDS system, a more acidic medium induces aggregation. A same result was observed for the Eudragit L100/CTAB at a more basic pH. Moreover, it was observed that increasing salt concentration (higher than 100 mM) led to aggregation as generally observed for polycations/anionic surfactant systems.  相似文献   
18.
Cellulose - In this study, alkali and alkaline earth metal chlorides with different cationic radii (LiCl, NaCl, and KCl, MgCl2, and CaCl2) were used to gain insight into the behavior of cellulose...  相似文献   
19.
The combination of the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction with sol–gel processing enables the versatile preparation of sol–gel materials under different shapes with targeted functionalities through a diversity-oriented approach. In this account, the development of the CuAAC reaction under anhydrous conditions for the synthesis of sol–gel precursors and for the assembling of magnetic nanoparticles on self-assembled monolayers is related, as well as the use of the classical CuAAC methodologies for the functionalization of mesoporous silica nanoparticles and microdots arrays. Coupling CuAAC and Sol–Gel will result in simplified preparations of multifunctional materials with controlled morphologies.  相似文献   
20.
This paper reports the development of a dual immunosensor using magnetic microcarriers (MBs) and amperometric transduction at dual screen‐printed carbon electrodes (SPdCEs) for the simultaneous determination of two biomarkers: interleukin‐13 receptor α2 (IL‐13Rα2) and E‐cadherin (E‐CDH), with both extracellular and soluble fraction; oncogenic and tumor suppressor markers, respectively, of great relevance in metastatic processes. The implemented methodology involved the formation of sandwich‐type immunocomplexes using specific capture antibodies immobilized onto carboxylic acid magnetic microbeads (HOOC‐MBs), and biotinylated detector antibodies labeled with streptavidin?horseradish peroxidase conjugates (Strep‐HRP). The amperometric detection was performed by addition of hydrogen peroxide in the presence of hydroquinone (HQ) as the redox mediator. The dual immunosensing platform provided linear calibration ranges suitable for the determination of both biomarkers in liquid and solid clinical specimens as well as excellent selectivity against other cancer biomarkers. This simple handling dual bioplatform was applied to the determination of the soluble and extracellular fraction of the target biomarkers in serum and paraffined‐embedded tissues from colorectal cancer (CRC) patients diagnosed at different tumor grade. The obtained results reveal great potential of this configuration to improve the reliability in diagnosing metastatic CRC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号